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TUNESHIFTS, TUNESPREADS AND DECOHERENCE 

S.R. Mane 

Fermilab, P.O. Box 500, Batavia, IL 60510 

In a ring with amplitude dependent tunes, particles subjected to the same dipole kick at 
some initial time will subsequently decohere. Several formalisms are used to calculate the 
decoherence time for a particular model Hamiltonian, and they are all shown to yield the 
same result. Because the precise definition of the decoherence time is somewhat arbitrary, 
alternative definitions are briefly treated, to show the changes they would make to the results 
presented here. A more general model Hamiltonian is also briefly studied. The calculation 
of the decoherence factor, which gives the time evolution of the beam centroid after the kick, 
not just the overall decoherence time, is also studied, and heuristic derivations for certain 
special cases are given. The validity of some of the approximations involved in the derivations 
is investigated, and an approximate bound is given. 
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1 Introduction 

In general, the various particle trajectories in a storage ring have different tunes; or phase 
advances per unit time. This means that, if a beam is given a dipole kick, to study the 
response to some stimulus, the individual particles will eventually get out of phase with each 
other, even though they were all kicked by the same amount. This phenomenon is called 
“decoherence.” It results, in particular, in a modulation of the beam centroid motion. If the 
dynamics were linear, the centroid would execute a pure betatron oscillation, but because 
of decoherence its amplitude varies with time. Depending on the nature of the decoherence 
mechanism, the beam centroid amplitude may or may not decay irreversibly to zero [l]. 

There are many ways to calculate the decoherence time. First, though, it should be 
noted that decoherence is a statistical phenomenon - it arises because of the loss of phase 
coherence of a distribution of particles - and so the “decoherence time” is a qualitative 
concept. The decoherence criterion used in this report nil1 be defined below, and alt,ernative 
criteria will be discussed later. In this report, I shall calculate the decoherence time, using 
a particular Hamiltonian, using several different methods. Partly, this work proves that all 
of these methods are equivalent, and partly it explains how to apply these different methods 
to the same problem. For lack of standard names, I have christened the formalisms my- 
self: the “Edwrds method, ” “differential equation method, ” “canonical transform method,” 
“Deprit’s/Michelotti’s method,” and “Forest’s/Yokoya’s method.” I do not claim that any 

one method is superior to any other. I say only that the methods are equiaalent, and prove 
it by deriving the same answw (the decohennce time) f ram all of them. I also consider, in 

addition, the generalization of the simple model Hamiltonian used throughout most of the 
report to a model of an arbitrary distribution of sextupoles (a “discretexextupole Hamilto- 
nian”). The calculations in this report are purely theoretical. Experimental data have been 
taken by the l3778 collaboration at t,he Fermilab Tevatron, and details of the comparison 
between theory and experiment will be given elsewhere [2]. 

In addition to the decoherence time, there is also t,he concept of the “decoherence factor.” 
This is the function that shows how the beam centroid amplitude uaries with time, as 
opposed to merely giving the decoherence time. I investigate some d&ails of the validity of 
the approximations used in calculating the decoherence factor for a specific model ill, and 
study the derivation of the decoherence time from their solution, for various circumst,ances. 
I show that the results of Ref. [l: agree with “simple-minded” heuristic derivations, and 
offer some comments on some special cases. 
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2 General Remarks 

2.1 Hamiltonian 

The Hamiltonian used is 
H = I6 + k13” cos(37,h) (1) 

Here I and 4 are the action-angle variables obtained by diagonalizing the linear dynamics, 

6 = v - p/3 is the difference between the “unperturbed tune” v and the nearest resonant 
value p/3, where p is an integer not divisible by 3. The quantity k is a constant. 

Let us call the independent, variable 8. Then the equations of motion are 

$ = {I, H} = -g = 3k13’2sin(3$) 

$ = {$,, H} = ; = 6 + ~kI%x(3$) 

(2) 

(3) 

2.2 Decoherence criterion 

Without nonlinmrities; $ G &, = 06. With nonlinearities, 

7/~ G v&l = 06’ $ oscillatory terms , (4) 

where 6’ is a constant not equal to 6. I shall neglect the oscillatory terms for now because 
they average to zero. I shall check the validity of this approximation below. Then, after N 
turns, $,, = 2x6N. To obtain the decoherence time we define N such that, after N turns; 
+i,r = & zt 2~. The i sign is chosen so t,hat N is positive, and depends on the sign of the 
tuneshift, which is nega,tive for a sextupole induced resonance. Then 

2?r6’N = 2a6N &22n 

The above criterion is really only applicable for small kicks to the beam, i.e. the displacement 
of the beam centroid from the closed orbit should be much less than the transverse beam 
size/standard deviation (~9). This is because the “reference particle” in the above criterion, 
which should really be at the beam centroid, is on the closed orbit. If the beam centroid 
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displacement much exceeds the beam size, then the decoherence criterion will change. It 
will then include the initial amplitude of the kick. To see this, let us assume that the tune 
depends on amplitude via 

6’ = 60 + 6J, (6) 

where SO and Sz are constants, and the initial kick has an amplitude lJeentro;dI = X*C?, with 
X >> 1 and u2 = (I) as the transverse emittance. Then we take $0 to refer to the beam 
centroid 

$10 = 2~[6o + 6Jauz]N (7) 
and we evaluate llf,,l on a trajectory roughly one standard deviation away, viz. 

&I 2 2i~[6o t Sz(Xu i CT)‘]N, (8) 

and so 

hd -&I = +h 

N6217z[(X f l)* - X2] ‘c *1 

N-’ 2 2X162:0’ = 2X(Au). (9) 

I prefer the notation (Au) to (A6) for th e t unespread. The decoherence time is shorter, by 
a factor of roughly X. The factor of 2 can be discounted because it will change if a more 
accurate average over the particle distribution is performed. We shall see an explicit example 
of these ideas below, when we examine the results of Ref. [I]. 

2.3 Expansion parameter 

The calculations below will all employ perturbation theory. The expansion will sometimes 
be formulated in powers of k, and sometimes in powers of I ‘1’ Since neither of these are 
dimensionless quantit,ies, one must really be more precise: what is the expansion parameter? 

Note, from the Hamiltonian in Eq. (l), that kI ‘I* is dimensionless, and, from the calcu- 
l&ions below, we shall see that this is really the expansion parameter. In practice, however, 
I is not the same for all particles, and so, for numerical work, a more reasonable expansion 
parameter is ka, where ~9 is the transverse emittance. Most of the time in the calculations 
below, this point will be glossed over, and the perturbation expansion will be expressed as a 
series in powers of k only. The reader must understand that this is just for brevity. 
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3 “Edwards Method” 

I shall first consider a decoherence calculation used by Edwards [3], and I shall call it the 
“Edwards method” for lack of a better name. One rewrites Eq. (3) in the form 

dli, 
6 + ; kW cos( 37~5) 

= dfI , (10) 

hence 

I 

+ &+ * 

o 6 + ;kI+($‘) cos(3lj’) = o de’ = ’ J (11) 

Now H is an invariant of the motion, so put H = E = constant, and solve Eq. (1) for 
I = I(+). Thus 

I($)6 t k13”($) cos(3$) = E , (12) 

and substitute t,his into Eq. (11). Edwards integrated Eq. (11) numerically. To proceed 
further analytically, I shall solve for I = I($) assuming k is small, and expand the integrand 
of Eq. (11) in powers of k. Thus I expand I = I0 t II + ., where I, o( k”. The first 
approximation, using Eq. (12), is IO = E/6. Th e second approximation is given by 

(IO + I, + .)6 + k(Io + I1 + . . .)3’2 cos(3qh) = E 

Substituting into Eq. (II), 

[s t ;kI’!‘($) cos(3$)] ml 

I16 + ICI;” cos(34) = 0 

k E ‘I2 
II = -2 a 

( > 
cos(3gJ) (13) 

z [“+~k(~-~~~)3’z..,!3,))1’zco~(3~)]-~ 

= [6+ ;k (;)I” (1 ~; (~)1’2cos(3$o*cos(3~)]-’ 

z [L: ;k (f)“’ (I - ;$ (;)“‘cos(Si/)) cor(3$ 

= [t + ;k (;)1’*cos(37jl) - a; (;) COS’(~$)]~~ 
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= f [1 + ;g ( y2 cos(3$J) - a; (T) cost] -' 

= ~[1-~~(~)1'zco1(3~)+~~(~)c~s~(3~) 

+~$(f)cos2(3~)+... 
I 

= ~[1-~~(~)1'2co~~3P)+3~Co~~(3d)+..j . (14) 

,I 
J 

* W 
o 6 t +“I”“($‘) cos(3$,‘) 

Hence 

,,(,.!q + oscillatory terms 

Substituting into Eq. (ll), 

q!a z f?E(l-g) 

= B(E-eg : 

(15) 

(16) 

2 
N = 16: A’( = 3;:~ ___ __ 

and, using Eq. (5), 

(17) 

In Ref. 131 the decoherence time is calculated in a different, way. One first finds n1 and 
nz, for k = k, and k = kz respectively, via 

~26 = s W ozn [6 + ;kW($‘) cos(3$f)]E=E1,Ez ’ 
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and then finds n such that (n $ l)nl = nn2, which yields 

(19) 
The decoherence time is given by N = nnl. In terms of the formalism used in this note, 

II 7~16 = - , 
277 

,,6=,(1+%) , (20) 

with I$ = 2~, El = 0 and Ez = E. Then 

n1 
7L= ii 

$1 - nzl =gl 1 31;f)-i=z. 

Then 
263 1 2P N=nnl=--= 

3k2E 6 31cZE’ 
which is the same as Eq. (17). 

4 Numerical Results 

Before turning to the other methods, let us check the above formula against the numerical 
results quoted in Ref. [3]. To do this, I need to relate the parameters used in the various 
calculat,ions. The Hamiltonian of Ref. [3] is 

H1 z ;; cos(3$) -c ;(2~6) (23) 

I shall determine the relationship between the above symbols and the ones used in this 
report. First, the independent variable is not 8, but n, which is related to 8 via 8 = 2x7~. 
Therefore, to compare the above Hamiltonian with Eq. (l), one first divides by 2x: 

H; = ;6 + $$fj cos(34) 

Thus I = d/2, OI a = &, and so 

H’ = 16 + L (21)3’2 A 
1 ----cos(3$) = I6+ ~13iz~o~(3UI’) 

2T 3 4 
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Hence 

A quantity a0 = 8~6/A is introduced, and the definition a = uao, which yields 

H; = gu%+ $&+s(3$) 

= Fw63u2 + (8nYJ3 3 
2AZ 3A2 u 434t) 

= (8~1’6~ 3A2 (27) 

The next step is to put u = u0 and cos(3$) = 1 to obtain the value of the constant, E: 

(28) 

and then one substitutes these expressions into the de-coherence formula Eq. (17), i.e. 

= (@363 [4-i $4 , (29) 

and so, from Eq. (17), 

N=& 

= 

? (;)3&3 ,L; + 34 

= 

(i)‘S ,:;+ $43 
(30) 

In Ref. [3j, the values used were 6 = 0.07 and use u0 = 0.3 and ~0 = 0.4 for the t,wo values 
corresponding to E = El and E = Ez, respectively. Let us put 6 = 0.07 and u0 = 0.35. The 
result is N = 141.8 turns, as compared to N = 141 from Ref. [3], so the two derivations 
agree. 



5 Differential Equation Method 

In the Edwards method, I actually obtained 0 = S($), which was then inverted to find 
@ = $(6), to obtain the tuneshift. Now let us solve Eqs. (2) and (3) to obtain I+!S = +(~9) 
directly. As before, I put I = lo + I1 + , . ., and also write $J = &, $4, + & + ., where the 
expansion parameter is k. The first approximation, using E.q. (2), is &, = 60. Recall also 
that IO = E/6. Then, from Eq. (3), 

I = -b E 3/2 1 
( > 6 6 

cos(36B) 

Returning to Eq. (3), 

$(+, + $1) = 6 + ;kI,L/2cos(3~o) 

E 112 
= b~;k(~) cos(368) ] 

which yields 

41 -= 
du9 

;k f 
( > 

l/2 
cos(360) 

and so 

dI 
z 

E 3kI,f” sin(3&) = 3kIz” sin(366) 

I = IO - +(368) 

E k E ‘1’ zz 
6 -4 6 6 

cos(368) , 

$1 = $ (:)I” sin(368) 

The next approximation is given by 

$($Jo + $1 + $2) cc 6 + ;k(l, t 1,)1’zcos(3($y, + &)) 

z 6 t ;k#’ (1 t jj:) (cos(3&7) - 3& sin(3&)) , 

from which I find 

dYjz 
de 

= ~kIi1i21~ COS(~$,) - ;kIi” sin(3&)3& 
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= -ik (:)-I’* i (~)3’2cos2(360) - ik (f)1’2g (f)1’zsin2(366’) 

3kZE 9kZE 
= -462 cosz(368) - 462 sm’(360) 

3 k2E = 
2 62 

t oscillatory terms 

Therefore, neglecting the oscillatory terms, 

&3Y!~~-3k2E 
de 27’ 

Hence, from Eq. (5), 

N=1= 262 

/6 - 6’1 3kZE’ 

(36) 

(37) 

(38) 

which is the same as Eq. (17) 

6 Canonical Transform Method 

Here one seeks to perform a canonical transformation to dia.gonalize the Hamiltonian to 
first order in k. The transformed Hamiltonian will then yield an action-dependent tune, 
from which we can calculate the decoherence time. Let the final action-angle variables be 
{J, CJ}. We see from Eq. (2) that dI/dfl = O(k); hence we want dJjd6’ = O(k’). A suitable 
generating function is 

Then 

F=Jq!- 
k J312 
3s sin(3$) (39) 

I = aF = J- ?-d= 
w 

7 cos( 3$) 

kJ’i2 
2s sin(34) 

The transformed Hamiltonian is 

K = g+H 

(40) 

= 61 + k13” cos(34) 
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6J - kJ3’2cos(3~) + k J - 
k J312 311 

zz 6 cos(34) cos(3llr) 

= 6J- G cos2(37,b) + O(k3) 

(41) = 6J- 
3kzJz 
2s cos2(3’P) + O(k3) 

Thus dJ/dB = -aK/N = O(k2), as required. The new tune, to O(k2), is 

f=~=~ N &-3k2J 
d0 0J 

7 cos73Q) 

= 6- 
3k’J 
26 $ oscillatory terms . (42) 

This agrees with all the previous formulas for the tuneshift. Using Eq. (5), with J = E/6 
because we want 16 - 6’1 only to O(k’), the decoherence time is 

2 

*’ = ,6: 6’, = 3& ’ (43) 

in agreement with Eq. (17). 

7 Lie Algebra: Deprit’s/Michelotti’s Method 

A disadvantage of the standard canonical transformation technique is that the generating 
function depends on both the new and old dynamical variables. It is not a function of the 
old variables only. The use of Lie transformations gets around this problem. One such 
method is called Deprit’s algorithm 141. I shall actually employ the algorithm as described 

by Michelotti [5]. The perturbation expansion parameter is 12, and functions H,, K, and S, 
are needed 

(44) 

Here H is the old Hamilt,onian, K is the new (dkgonalized) Hamiltonian, and S is the 
generator of the Lie transformation [5]. Obviously 

H,=I6, HI = 13” cos(3$), H2=...=0. (45) 

Then, by definition, 

(46) 
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By definition, K1 is chosen to equal the constant part of the r.h.s., so K1 = 0. Then the 
solution for S1 is 

s1 = 
1312 
36 sin(3$). (47) 

The constant of integration is chosen to that S1 is periodic in 14. Again by definition, 

(&+~&)s~+K~ = &+{HI,.%}+{KI,~) 

P 
= 0 t {Pi2 cos( 3$) , 36 sm( 3$)} + 0 

p/2 IV2 
= -313” sin(3$)% sin(3+) - :1’!’ cos(3$)- 6 cos(3llr) 

Since Kz is defined to equal the constant part of the r.h.s., Kz = -31*/(26), which is the 
whole r.h.s., and so Sz = 0. Therefore, to O(k”), the new Hamiltonian is 

K = Ko+kKI+;K+.. 

= I6- 
3k212 
7+... (49) 

which is the same as in the previous section, neglecting oscillatory terms. The new tune is 

(50) 

which agrees with all previous formulas for the tuneshift, and hence yields the same deco- 
herence time. 

8 Lie Algebra: Forest’s/Yokoya’s Method 

Ref. [j] is not the only formalism to apply Lie algebra. t,o accelemtor physics. Another ap- 
proach has been developed by Dragt [6]. D’ g Ia onalization procedures using Dragt’s formalism 
have been developed by Forest [7] and Yokoya [8]. Strictly speaking, both of these authors 
diagonalize not the Hamiltonian but the S-matrix (the one-turn map). In this section, there- 
fore, a variant of their formalisms will be used, rather than a direct copy of their work. The 
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Hamiltonian is 

H = I6 + k13i2 COS(~T,!J) E Hz + Hz + H4 + 
=Ll 

(51) 

where H, = O(I”/‘). The diagonalized Hamiltonian is given by the Lie transformation 

K = e-:v4V’:e-:vSH, 
(52) 

where : V: denotes a Poisson Bracket operator, 

:f:s={f,g). (53) 

The functions r/, are chosen to diagonalize H up to O(I’@). We therefore only need r/, for 
our purposes, since we want the tuneshift to O(k*). Adapting the results of Refs. [7] and 
‘81; the solution for V, is 

8 
L< = 

J 
H3 dtl’ = 

ICI=+ 
-cc 

3s sin(3$) (54) 

Then 

K2 e-:V$H 

= Hz+H3-:&(H2+H3)+;:VS::1/3:H2+... 

= I6 t k13’z~os(3~) - i :13’*sin(3$): I - f$ :13”sin(3$): 13’2cos(3~) 

+$ :13’2sin(311,)::13’2sin(3~): I t 

= I6 + k13” cos( 3~4) ~ k13’* cos( 37/5) 

~$ [313~2cos(3$)~I’~2cos(31(l) + ~I’~2sin(3~)313’2sin(3~)] 

+ 2 : 13” sin(3$) : F2 cos(3$) + 

(55) 

which is the same expression as in previous sections, for the diagonalized Hamiltonian, and 
so it leads to the same tuneshift and decoherence time. 
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9 Another decoherence criterion 

9.1 Small kick amplitude 

The decoherence criterion used in this note is not unique. We could have set I$,,1 - go; = 1, 
not Zr, as the decoherence criterion in Eq. (5). The decoherence of a kicked beam caused by 
a betatron tune spread in the beam is calculated in Ref. [l]. It is assumed that the nonlinear 
tune v is related to the linear tune vo by (they use v’s rather than 6’s) [9] 

” = “0 ~ pa2, 

where a = &%/ma. Here c is the Courant-Snyder invariant, 

(56) 

c= 
2 t (cm + Lw' = 21 

P 
(57) 

LT~ = 8~ is the transverse beam size, and p is the beta function at 0 = 0. Hence (a’) = 2, 
the average being over the beam. For a kick to the beam centroid of peak amplitude IZ(O)!,k, 
the beam centroid amplitude on the nth turn is given by [l] 

b(n)lpk = A(n)l4O)lpk~ 

This equatioy defines the decoherence factor A. If ~%(0)~Pk = Zuo and Z << 1, 

(56) 

A(n) z 1 
1+ (&,n)2 ’ 

(59) 

where QP = 4x1~. Thus the decoherence mte (inverse number of turns) is 

N-l = Q, = 47r/.l= 27r(Av) (60) 

However, the decoherence rate, according to the criterion Eq. (5), is 

N-’ = (Au) , (61) 

when averaged over the beam. Thus the decoherence time calc&ted in this note, averaged 
over the beam, is a factor 27r longer than that in Ref. [l]. Th’ 1s can be understood as follows. 
If, instead of Eq. (5), we ask that l+L+,i - $0 = 1, not 27r! then 

l+L-Th = 1 

127&N - 2dNl = 1 

N-l = 2?rl6-6’1, (62) 

which yields Eq. (60) when averaged over the beam. 
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9.2 Large kick amplitude 

The full solution for A in Ref. [l] is 

1 
4%) = 1+ (Qpn)” exp 

1 

-1 (QLP12 1 2 1 $ (Q,n)Z : 

where Q, = ZQp = ~RZ(AV). For a large kick amplitude Z >> 1, the decoherence factor 
can be approximated by 

A(n) z ,-(~,-)2/z, 
(64) 

which is a Gaussian with a standard deviation of Q;‘. Hence the decoherence rate is 

N-’ = Q, = 27rZ(Av), (65) 

and is a factor Z larger, or the decoherence time is a factor Z smaller, than the small kick 
amplitude value. This agrees with the heuristic analysis presented earlier for the decoherence 
criterion. 

Note that factors of order unity have been ignored above, in fixing the value of the 
decoherence time. The decoherence criterion has not been fixed as a half-life, or l/e life, 
of the beam centroid amplitude. Instead, qualitative measures of the time scales have been 
used. Therefore one can only say that the large kick amplit,ude decoherence time is of order 
Z smaller than the small kick amplitude value. One cannot pin down factors of 2, etc. this 
ma,y. 

9.3 Intermediate kick amplitude 

If Z z 2 or 3, then a Gaussian approxinmtion for the decoherence factor A(n) is less valid 
than if Z = 5 or IO. From, the Gaussian a,pproximation above, the beam centroid amplitude 
is a factor e-l/’ of its initial value after one decoherence time. Using this criterion, we can 
calculat,e the correction to the decoherence time if Z does not great,ly exceed unity: 

1 (Q,N)' 
-s1+(Q,N)2 1 = 

e-1/2 
( QJV 

1 $ (QpN)2 = 1 

NmZ = Q; -Q; 

N = (66) 
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The Lorentzian [l+ (Q,n)‘]-’ outside the exponential in Eq. (63) leads to a further logarith- 
mic correction, which I shall ignore in this report. For 2 = 2 - 3, the non-Gaussian nature 
of A(n) leads to an increase of about 5 - 20% over the simple Gaussian approximation for 
the decoherence time. 

10 Additional phase modulation 

In practice the betatron phase, if modulated by sextupoles, varies according to 

dll, - = 60 t 61~2 cos(Xljt) + S& + 
d0 (67) 

where X might, be 3, but we can consider arbitrary values. It is adequate to approximate 

d$/dfJ = 60 in the cosine above. Note that the normalization is (IX”) = 2, hence 62 = -p. It 
is assumed in the Ref. [l] derivation of A(n) that th e contribution of the & term is negligible. 
In this section I shall estimate the effect of such a term. I start with 

z=,;111..s(j$dB’), (68) 

where the phase is given by 

I g de’ = $0 t (60 t S,a’)S + g [sin(X$) - sin(X&)] 

The population density function is given by 

p(a,,,o) da,&, = ae-(“2tZ2-ZnZcor~~]/Z !!?$!? 

The beam centroid is now calculated as in Ref. [l]: 

z = &jJ +$ ae~(LL2+Z~-2aZcor*~)/2X 

,i~,,ei[(60+62=2)6+26,0(X6a)~’ rin(x(~lo+soe/Z))co.(xaas/Z): 
-1 

(69) 

(70) 

= @J !!$! ae-(“2+zw c e”m+oIm(aZ)x 

m 

x Re ,i+o e+O+6202)e T eikA(rlat608/2)~k (!gcos (T))} (71) 

16 



The integral over $0 kills all terms for which m i (1 + U) f 0, i.e. one must have m = 
3(1 + leX). Previously, & = 0, and so Jk = 0 unless k = 0, hence m = -Cl only. Now there 
is an infinite sum. The result is 

x~e {T ~~+~~(az)J~ (2 cos (F)) ~i(60+62az)s+i**60s~2} (72) 

Gradshteyn and Rhyzik [ll: have a solution for this as a sum of hypergeometric functions, 
but that merely trades one complicated expression for another. Note, however, that we 
basically want the Gaussian part of the decoherence factor, if we restrict attention to large 
amplitude kicks to the beam. This can be obtained by using the asymptotic expansions of 
the Bessel functions. For large arguments, 

Uz) = & > Jy(*) ~ Jzcos(* - ;m ~ $7T) 
&G 

To demonstrate, consider the & = 0 case again. Then 

The exponent is a quadratic polynomial in a, and yields a Gaussian if I complete the square, 
which I therefore do, and obtain 

(l-i26,tl)$aZ= (q2620) [ap 1-;260]z- z2 
2( 1 - iZS,S) 

(75) 
2 

and I pull the last term out of the integral, since it does not depend on a. This yields 

z O( \/$ ~-z2~2~zz~~z(~~izs~s)~ x integral of “o&r unity" 

iZz&O 
cx exp 1 1 - i2Sz0 1 

iZ26#( 1 + i26,B) 

1 + 46,282 1 
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+ A(0) cc exp (76) 

which is the exponential part of the decoherence factor in Ref. [I] or Eq. (63). 

Let us now consider 61 f 0. Now we need to include the J Bessel function as well. Just 
as for the I Bessel function, the contribution to the exponential behavior of zz is determined 
by the large argument approximation. Let us define 

for convenience. Then 

0: e -z-/2 

I 

daae-(1-‘2628)a2/Ze”(2f”K) 

o( e -2*/2,(ZtiK)*/[2(1--i26*8)] 
(78) 

In the above derivation I have ignored the sum over k, and various complex exponent& 
which do not contribute to the exponential part of the decoherence factor, although of course 
they contribute to the phase of 5. The exponential part of the decoherence factor is just the 
magnitude of the above expression, viz. 

A(8) cx e-“” wJ [ 2(::$&)] exp [ - :::gg 

[ 

1(22&O + K)Z 
= =p -2 1 + 4&p 1 

It has the same Gaussian part as before but with a shifted origin. Since K is bounded, 
because lK1 5 261/(X&), the shift of the origin is irrelevant if 

W&t >> IKI. (80) 

Therefore we can ignore Sl and continue to use the previous decoherence formula if we make 
a cut on small values of 0 given by 

or, in terms of a number of turns, 
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Since Ndecoh = (4ai6zl)-’ from Ref. [l] for Z >> 1, we can rewrite this result in the form 

However, we must also have NC,, < N de&,, or else there will be region of useful data, hence 
it is necessary that 

However, in order to extract the correction to the Gaussian part of the exponential, I used 
a, large argument approxima,tion to the J Bessel function. This means IKI >> m for J,, in 
particular IKl > 1, i.e. 

Therefore, if # > 1, there is no region of useful data to which a Gaussian decoherence 
factor as in Ref. [l] can be fit. On the other hand, if IIil < 1, then the decoherence 
factor of Ref. [l] is satisfactory. The J Bessel functions then add a correction only to the 
non-exponential pxt of the decoherence factor. 

The conclusion, in words rather than equations, is that 60 should not be smaller than S1, 
i.e. a particle must not be so close to a resonance that d$/dO crosses the resonant tune as it 

oscillates. The beam as a whole should be sufficiently far off resonance so that a “1-u” particle 
does not cross the resonant tune. This fact is actually pointed out in Ref. jl] (although a 
mathematical bound is not given), because t,he wthors state t,hat their calculation assumes 
the nonlinear distortion of the phase-space trajectories is small, basically only a tuneshift, 
and this is valid only far off resonance. 

11 Discrete-sextupole Hamiltonian 

In the above calculations a generalized sextupole strength k was used. To compare with 
experimental results, I need to express the Hamiltonian in terms of the strengths B”/(Bp) 
of the actual sextupoles in a ring. I follow the notation of Merminga and Ng [lo], with 
modifications to conform to the notation already used above. The Hamiltonian is 

RB” 
H = VI + -z3 

6BP 

Here R is the average machine radius and 

z = J2lps cos(* + Q - VO) (87) 
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The linear action-angle variables are I and v,!J, respectively, and @ = J/3;’ ds is the Floquet 
phase. Now define Q = ‘# - 14 and 

(88) 

where /& is a constant, and Z is the length of the kth sextupole. Then 

= 

- b[3($ + Q)l t 3cos(ll, + Q)] 

= (21)93;" 

8 
[ei3(++Q) t 3e’(4+Q) + cc.] (89) 

Since the functions 

are periodic in 0, I can expand them into harmonicsl viz. 

1 RB” p; I” eii3q ~ 

C-1 48 BP PO 
= 5 AJ*3me'"iJme-ime 

m=-cc 

where Ahzrn and ai3,,, are real. Inverting the Fourier series: 

~ 1 c Skeii3Q*eimer - 
48~ k 

From this one can easily show that 

ALl?l = A3--m 

a-yjm = -CY3-m 

(90) 

(92) 
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The Hamiltonian can now be written as 

H = vJ + (21)3/z&iz c [&,ei(3$+“J--“~) + A_3me-i(3ti--+m~)] , 
(93) 

where only terms resonant at third-integer values have been retained. I perform a canonical 
transformation to change the linear tune to 6 = v - (n/3), where n/3 is the nearest third- 
integer harmonic to v. Let the new act,ion-angle variables be {J,+‘J’}. The generating function 
is 

F = J($ - FO) ) (94) 

and so 

K = ,+H-35. (95) 
Thus 

K = 6 J + (2 J)3/7$c,‘iz c [A3mei(3~‘+a3,~(m~“)B) + A_3me;(311’--o-lm+(m+n)B)] (96) 

m 

To avoid proliferation of notation, I shall rename the Hamiltonian H and call the action- 
angle vziables I and 4 again. To compare with the calculations in the previous sections, I 
nox retain only the harmonic closest to the resonance. In the first exponential this is given 
by m - n = 0 and in the second exponential I select the term with m + R = 0. Then 

H = 61 + (21)3izp;/z [&e”(3ti+“3-) + ,,m3m,e’(3+-d] 

= 6I + 25/21393~‘2A3, cos[3($ + a3,,)] , (97) 

using the relations between A-,,, and AmSnr and as-= and Q-~~~. The above Hamiltonian can 
now be easily compued to tha,t in the previous sections. One ca,n identify t,he generalized 
sextupole strength k ss 

k = 2”lz/3;i2.43, (98) 

and so the expression for the tuneshift is 

4WJ Az 

6 
3n 
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The above expression makes it clear that the tuneshift is negative definite, for an arbitrary 

sextupole distribution, as has been long known, and thus provides a check on the calculation. 
Expanding in a double sum, 

c SkSk =P[i(n(h ~ ‘k) t 3(Qk - Q,t,))] 
k,b’ 

The decoherence time is of course given by N = 16 - 6’1-I. Since the tuneshift is real, the 
above expression can be replaced by its real part, hence 

N-’ = $&- sksk'C'+(8k -ok')+ 3(Qk - Q&J)] , 
k,k’ 

which avoids the use of complex numbers in numerical evaluations. The tuneshift formula 
is a special case of those of Collins [12] and Oh numa [13], which have been shown to be 
equivalent by Ng 1141. These authors include all the harmonics, including first-integer as 
well as third-integer terms (or the equivalent in their respective notations). 

12 Conclusions 

I have shown how to calculat,e the decoherence time, for a specific model, using several 
different formalisms :3] - [B]. I h ave shown that they all yield the same answer, having 
first specified a well-defined model-independent criterion for the decoherence time. I have 
also trea.ted various modifications to the assumptions of the basic theory, e.g. large kick 
amplitudes or phase lags of 1 rather than 27i radians, and derived the resulting changes to 
the decoherence time. 

Detailed mathematical derivations of the decoherence factor, hence the decoherence time, 
are given in Ref. [l]. The former contains an exponential factor, which is approximately a 
Ga,ussian for large kick amplitudes (i.e. kick amplitudes much larger than the r.m.s. trans- 
verse beam size). I have supplied various heuristic derivations for both the decoherence time 
and the exponential part of the decoherence factor, and in addit,ion given an approximate 
mathematical bound for t,he validity of some of the approximations made in Ref. [l]. For 
the model treated in Ref. [I], if the r.m.s. tunespread of the beam is (AI), and the initial 
kick amplitude is ZD~, where rp is the r.m.s. transverse beam size due to betatron motion, 
then if Z < 1 the decoherence time is 

'vdecoh = & (Z c 11, 
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while if 2 >> 1 then the decoherence time is 

1 
Ndecoh = z(av) (Z B 1) > 

but if Z is only slightly larger than unity, then I find a correction 

1 
Ndecoh 2 ~ 

1 

Z(Av) &FF 
(Z > 1, z $11, 

(103) 

(104) 

which increases the decoherence time by about 5 - 20% for Z 2 2 - 3. Note that the 
decoherence criterion for the small amplitude kick case is actually different from the latter two 
cases (where the criterion is the same), because it is based on a Lorentzian not a Gaussian. 
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